需水量預(yù)測方法的評析與擇優(yōu)
論文類型 | 技術(shù)與工程 | 發(fā)表日期 | 2001-07-01 |
來源 | 《中國給水排水》2001年第7期 | ||
作者 | 張雅君,劉全勝 | ||
關(guān)鍵詞 | 需水量 預(yù)測方法 評析 | ||
摘要 | 張雅君,劉全勝 (北京建筑工程學(xué)院城建系,北京100044) 摘 要:在深入地研究了目前常用的需水量預(yù)測方法的基礎(chǔ)上,對需水量預(yù)測方法進(jìn)行了科學(xué)的分類,重點評析了ARMA、回歸分析、指標(biāo)法、灰色預(yù)測、人工神經(jīng)網(wǎng)絡(luò)、系統(tǒng)動力學(xué)等預(yù)測方法的優(yōu)缺點及適用條件,并對具體預(yù)測過程中的方法擇優(yōu)問題進(jìn) ... |
張雅君,劉全勝
(北京建筑工程學(xué)院城建系,北京100044)
摘 要:在深入地研究了目前常用的需水量預(yù)測方法的基礎(chǔ)上,對需水量預(yù)測方法進(jìn)行了科學(xué)的分類,重點評析了ARMA、回歸分析、指標(biāo)法、灰色預(yù)測、人工神經(jīng)網(wǎng)絡(luò)、系統(tǒng)動力學(xué)等預(yù)測方法的優(yōu)缺點及適用條件,并對具體預(yù)測過程中的方法擇優(yōu)問題進(jìn)行了探討。
關(guān)鍵詞:需水量;預(yù)測方法;評析
中圖分類號:TU991.31
文獻(xiàn)標(biāo)識碼:B
文章編號:1000-4602(2001)07-0027-03
隨著城市用水量的高速增長和水資源的日益短缺,水資源規(guī)劃和用水系統(tǒng)的優(yōu)化調(diào)度變得越來越重要,因而作為供水管理前提和基礎(chǔ)的需水量預(yù)測也得到了長足的發(fā)展。以前對需水量預(yù)測的研究多集中在針對某一種方法的研究及該方法在某一預(yù)測中的具體應(yīng)用,缺乏對各種方法的橫向比較。基于此種情況,有必要在深入研究目前常用的需水量預(yù)測方法的基礎(chǔ)上,通過分析以前的預(yù)測成果,對需水量預(yù)測方法進(jìn)行分類,對常用預(yù)測方法進(jìn)行評析和比較,并對預(yù)測過程中的擇優(yōu)問題進(jìn)行了探討。
1 需水量預(yù)測方法的分類
由于用水系統(tǒng)的復(fù)雜性,無法建立一個確定模型對它進(jìn)行描述,所以絕大多數(shù)需水量預(yù)測方法都是建立在對歷史數(shù)據(jù)的統(tǒng)計分析基礎(chǔ)上,不同的只是數(shù)據(jù)處理方式及應(yīng)用特點。
根據(jù)對數(shù)據(jù)處理方式的不同,需水量預(yù)測方法主要可以分為:時間序列法、結(jié)構(gòu)分析法和系統(tǒng)方法,具體分類情況如表1所示。
根據(jù)預(yù)測模型對未來的描述能力,即預(yù)測周期的長短,需水量預(yù)測方法可以分為單周期預(yù)測方法和多周期預(yù)測方法。此處提及的周期可理解為時、日、月、年等時間單位。如以過去的歷史數(shù)據(jù)預(yù)測未來一個單位時間的需水量,可視為單周期預(yù)測;預(yù)測未來二個以上單位時間的需水量,可視為多周期預(yù)測。一般來說,各種預(yù)測方法的預(yù)測誤差都會隨著預(yù)測周期的增加而增加,然而,誤差增長速度和抗隨機(jī)因素的能力有很大差別。時間序列分析法由于其所用數(shù)據(jù)單一(只是用水量的歷史數(shù)據(jù)),而最近的數(shù)據(jù)則包含了極其重要的預(yù)測信息,所以它的預(yù)測周期不宜太多?;疑A(yù)測方法實質(zhì)上是一個指數(shù)模型,當(dāng)需水量發(fā)生零增長或負(fù)增長
時,系統(tǒng)誤差嚴(yán)重,而且預(yù)測周期越多誤差越嚴(yán)重。人工神經(jīng)網(wǎng)絡(luò)方法需要數(shù)據(jù)動態(tài)的訓(xùn)練系統(tǒng),近期數(shù)據(jù)對系統(tǒng)影響很大,預(yù)測周期也不宜太多。上述三種方法均屬單周期預(yù)測方法。而結(jié)構(gòu)分析法和系統(tǒng)動力學(xué)方法是分析用水系統(tǒng)、收集多種用水?dāng)?shù)據(jù)后建立起來的,在用水系統(tǒng)未發(fā)生很大變化的條件下,可以得到較多周期的預(yù)測值,屬多周期預(yù)測方法。
值得一提的是,按周期對預(yù)測方法的分類應(yīng)與以前人們常用的長、短期分類區(qū)分開來,嚴(yán)格講,“長期、短期預(yù)測方法”的提法在概念上是不準(zhǔn)確的。長、短期分類是針對預(yù)測的分類,而不是針對預(yù)測方法的分類,通常情況下,根據(jù)需水量預(yù)測目的、預(yù)測對象的特點,可將其分為長期預(yù)測和短期預(yù)測。短期預(yù)測一般是為用水系統(tǒng)實施優(yōu)化控制而進(jìn)行的日預(yù)測和時預(yù)測,這種預(yù)測對預(yù)測要求精確度高、預(yù)測速度快;長期預(yù)測一般是指以水資源規(guī)劃為目的的年預(yù)測,它要求預(yù)測周期長、考慮因素多。
確定型 移動平均法 簡單平均法 簡單移動平均法 加權(quán)移動平均法 指數(shù)平滑法 一次指數(shù)平滑法 二次指數(shù)平滑法 布朗單一參數(shù)指數(shù)平滑 霍特雙參數(shù)指數(shù)平滑 三次指數(shù)平滑法 布朗單一參數(shù)指數(shù)平滑 溫特線性季節(jié)性指數(shù)平滑 趨勢外推法 多項式模型 指數(shù)曲線模型 對數(shù)曲線模型 生長曲線模型 季節(jié)變動法 季節(jié)性水平模型 季節(jié)性交乘趨向模型 季節(jié)性迭加趨向模型 馬爾可夫法 一重鏈狀相關(guān)預(yù)測 隨機(jī)型 模型預(yù)測 博克斯—詹金斯法(B—J) 自回歸模型(AR) 移動平均模型(MA) 自回歸—移動平均模型(ARMA) 結(jié)構(gòu)分析法 回歸分析 一元線性回歸分析 多元線性回歸分析 非線性回歸分析 工業(yè)用水彈性系數(shù)預(yù)測法 指標(biāo)分析法 系統(tǒng)方法 灰色預(yù)測方法 灰色關(guān)聯(lián)度分析 灰色數(shù)列預(yù)測 灰指數(shù)預(yù)測 灰色災(zāi)變預(yù)測 灰色拓?fù)漕A(yù)測 人工神經(jīng)網(wǎng)絡(luò)方法(ANN),以BP模型為代表 系統(tǒng)動力學(xué)方法
2 幾種典型預(yù)測方法的評析
2.1 ARMA方法
ARMA方法集時間序列模型之大成,是對自回歸模型和移動平均模型的綜合,它將預(yù)測對象隨時間變化形成的序列先加工成一個白噪聲序列進(jìn)行處理,所以它可對任何一個用水過程進(jìn)行模擬,對時預(yù)測、日預(yù)測和年預(yù)測均有效,且預(yù)測速度快(用計算機(jī)動態(tài)建模預(yù)測),能得到較高的預(yù)測精度。但是該方法與其他時間序列方法一樣,具有預(yù)測周期短、所用數(shù)據(jù)單一的缺點,只能給出下一周期需水量的預(yù)測值,且無法剖析形成這一值的原因及合理的誤差估計,所以它更適用于優(yōu)化控制的短期預(yù)測。此外,該方法還存在著明顯的滯后性,即最近一期實際數(shù)據(jù)發(fā)生異常變化時,由于模型的平滑作用,預(yù)測數(shù)據(jù)無法立即對之作出反應(yīng),使得在預(yù)測一些異常值時造成較大誤差,甚至失真。對此,筆者認(rèn)為應(yīng)分析出現(xiàn)異常值的可能原因,并據(jù)此修正ARMA模型。
2.2 回歸分析法
該預(yù)測方法是通過回歸分析,尋找預(yù)測對象與影響因素之間的因果關(guān)系,建立回歸模型進(jìn)行預(yù)測,而且在系統(tǒng)發(fā)生較大變化時,也可以根據(jù)相應(yīng)變化因素修正預(yù)測值,同時對預(yù)測值的誤差也有一個大體的把握,因此適用于長期預(yù)測。而對于短期預(yù)測,由于用水量數(shù)據(jù)波動性很大、影響因素復(fù)雜,且影響因素未來值的準(zhǔn)確預(yù)測困難,故不宜采用。該方法是通過自變量(影響因素)來預(yù)測響應(yīng)變量(預(yù)測對象)的,所以自變量的選取及自變量預(yù)測值的準(zhǔn)確性是至關(guān)重要的。針對我國基礎(chǔ)數(shù)據(jù)短缺、預(yù)測及決策體系不完善的現(xiàn)狀,筆者認(rèn)為在抓住系統(tǒng)主要影響因素的基礎(chǔ)上,引入的自變量應(yīng)適當(dāng),過多的自變量不僅會使計算量增加、模型穩(wěn)
定性退化,還容易把不可靠的自變量預(yù)測值引入模型,使誤差累加到響應(yīng)變量上,造成很大的誤差。
2.3 指標(biāo)分析法
指標(biāo)分析法是通過對用水系統(tǒng)歷史數(shù)據(jù)的綜合分析,制定出各種用水定額,然后根據(jù)用水定額和長期服務(wù)人口(或工業(yè)產(chǎn)值等)計算出遠(yuǎn)期的需水量。該方法與回歸分析有很多相似之處,在一定意義上它等效于以服務(wù)人口為自變量的一元回歸,用水定額相當(dāng)于回歸系數(shù)。所不同的是,回歸分析具有針對性,而用水定額具有通用性,與回歸分析相比,它的工作量要小得多,但是由于用水定額的通用性,在對特殊城市或地區(qū)進(jìn)行需水量預(yù)測時會造成很大的誤差。
2.4 灰色預(yù)測方法
灰色預(yù)測方法是一種不嚴(yán)格的系統(tǒng)方法,它拋開了系統(tǒng)結(jié)構(gòu)分析的環(huán)節(jié),直接通過對原始數(shù)據(jù)的累加生成尋找系統(tǒng)的整體規(guī)律,構(gòu)建指數(shù)增長模型。該方法能根據(jù)原始數(shù)據(jù)的不同特點,構(gòu)造出不同的預(yù)測模型,例如:應(yīng)用于增長速度有變化的灰指數(shù)模型,應(yīng)用于處理有季節(jié)變化數(shù)據(jù)或噪聲數(shù)據(jù)的灰色拓?fù)淠P?,以及能包含多個用水量影響因素的G(1,N)模型,所以該方法的預(yù)測范圍很廣,對長、短期預(yù)測均可,且所需數(shù)據(jù)量不大,在數(shù)據(jù)缺乏時十分有效。
2.5 人工神經(jīng)網(wǎng)絡(luò)方法
人工神經(jīng)網(wǎng)絡(luò)是一種由大量簡單的人工神經(jīng)元廣泛連接而成的,用以模仿人腦神經(jīng)網(wǎng)絡(luò)的復(fù)雜網(wǎng)絡(luò)系統(tǒng)。它在給定大量輸入/輸出信號的基礎(chǔ)上,建立系統(tǒng)的非線性輸入/輸出模型,對數(shù)據(jù)進(jìn)行并行處理,被學(xué)術(shù)界稱為無模型,而不像傳統(tǒng)方法(從概念模型到數(shù)學(xué)模型)的建模過程。實質(zhì)上它是把大量的數(shù)據(jù)交給按一定結(jié)構(gòu)形式和激勵函數(shù)構(gòu)建的人工神經(jīng)網(wǎng)絡(luò)進(jìn)行學(xué)習(xí),然后在給出未來的一個輸入的情況下,由計算機(jī)根據(jù)以往“經(jīng)驗”判斷應(yīng)有的輸出。
該方法實際上是對系統(tǒng)的一種黑箱模擬,更適于短期預(yù)測和動態(tài)預(yù)報短期負(fù)荷值以及動態(tài)訓(xùn)練系統(tǒng),在這方面不乏成功的實例。而對于長期需水量預(yù)測,目前還未見有人進(jìn)行研究。而且即使能得到較高的預(yù)測精度,由于其“黑箱操作”對制定用水政策、提高水的利用率方面并無幫助,因此,該方法不宜用于長期預(yù)測。
2.6 系統(tǒng)動力學(xué)方法
系統(tǒng)動力學(xué)方法把所研究的對象看作是具有復(fù)雜反饋結(jié)構(gòu)的、隨時間變化的動態(tài)系統(tǒng),通過系統(tǒng)分析繪制出表示系統(tǒng)結(jié)構(gòu)和動態(tài)特征的系統(tǒng)流圖,然后把各變量之間的關(guān)系定量化,建立系統(tǒng)的結(jié)構(gòu)方程式,以便運用計算機(jī)語言進(jìn)行仿真試驗,從而預(yù)測系統(tǒng)未來。
該方法應(yīng)用效果的好壞與預(yù)測者的專業(yè)知識、實踐經(jīng)驗、系統(tǒng)分析建模能力密切相關(guān)。通過系統(tǒng)分析、系統(tǒng)模型的建立,可以對系統(tǒng)進(jìn)行白化,再經(jīng)過計算機(jī)動態(tài)模擬,可以找出系統(tǒng)的一些隱藏規(guī)律。所以,該方法不僅能預(yù)測出遠(yuǎn)期預(yù)測對象,還能找出系統(tǒng)的影響因素及作用關(guān)系,有利于系統(tǒng)優(yōu)化。不過,系統(tǒng)分析過程復(fù)雜,工作量極大,且對分析人員能力要求較高,所以不適用于短期需水量預(yù)測。而對長期需水量預(yù)測,其優(yōu)勢是十分明顯的。
3 預(yù)測過程中的擇優(yōu)探討
各種需水量預(yù)測方法都有其自身的優(yōu)點及不足,而需水量預(yù)測就是結(jié)合預(yù)測的目的、特點,結(jié)合用水量變化規(guī)律,合理地選擇一種或幾種預(yù)測方法,并收集所需的數(shù)據(jù)進(jìn)行預(yù)測。因此,必然會遇到預(yù)測方法的擇優(yōu)問題。在一般情況下,筆者建議:
①對水資源規(guī)劃、城市水量平衡前期所做的需水量長期預(yù)測,由于其用水對象復(fù)雜、預(yù)測周期要求長,更重要的是在預(yù)測工作完成后,還要制定政策以能動地影響系統(tǒng),因此宜采用回歸分析法或系統(tǒng)動力學(xué)方法。
?、卺槍?yōu)化運行調(diào)度所進(jìn)行的時預(yù)測和日預(yù)測,宜采用ARMA模型或人工神經(jīng)網(wǎng)絡(luò)模型,且充分考慮用水系統(tǒng)中其他因素的影響(如天氣等),并把實際數(shù)據(jù)及時地傳輸給計算機(jī),由計算機(jī)動態(tài)地完成建?!A(yù)測—再建模—再預(yù)測過程。
?、蹖A(chǔ)數(shù)據(jù)缺乏的城市或地區(qū)進(jìn)行預(yù)測時,采用灰色預(yù)測方法進(jìn)行建模能得到較理想的預(yù)測結(jié)果。
?、軐π陆ㄋ畯S、管線、泵站等供水設(shè)施設(shè)計前所進(jìn)行的需水量預(yù)測,沿用以前常用的指標(biāo)法即可滿足要求。
?、輰εf設(shè)施改造前所進(jìn)行的需水量預(yù)測,在用水結(jié)構(gòu)變化不大且用水量歷史數(shù)據(jù)具有明顯的趨勢性時,宜根據(jù)歷史數(shù)據(jù)建立趨勢模型,預(yù)測出服務(wù)期限內(nèi)的需水量。該方法較指標(biāo)法針對性更強(qiáng)、預(yù)測值更準(zhǔn)確,且計算方法也很簡單。不過,在前面條件不能滿足時,還應(yīng)采用指標(biāo)法。
參考文獻(xiàn):
?。?]易丹輝.統(tǒng)計預(yù)測——方法與應(yīng)用[M].北京:中國人民大學(xué)出版社,1990.
?。?]聶相田,等.水資源可持續(xù)利用管理不確定性分析方法及應(yīng)用[M].鄭州:黃河水利出版社,1999.
?。?]李杰星,等.基于模糊神經(jīng)網(wǎng)絡(luò)的城市供水系統(tǒng)負(fù)荷預(yù)測[J].給水排水,1999,25(3):15-18.
?。?]朱寶璋.關(guān)于灰色系統(tǒng)基本方法的研究和評論[J].系統(tǒng)工程理論與實踐,1994,14(4):52-60.
?。?]呂謀,等.時用水量預(yù)測的實用組合動態(tài)建模方式[J].中國給水排水,1998,14(1):9-11.
?。?]王其藩.系統(tǒng)動力學(xué)[M].北京:清華大學(xué)出版社,1988.
電 話:(010)68322517
E-mail:uced@mail.bicea.net.cn
收稿日期:2001-04-02
論文搜索
月熱點論文
論文投稿
很多時候您的文章總是無緣變成鉛字。研究做到關(guān)鍵時,試驗有了起色時,是不是想和同行探討一下,工作中有了心得,您是不是很想與人分享,那么不要只是默默工作了,寫下來吧!投稿時,請以附件形式發(fā)至 paper@h2o-china.com ,請注明論文投稿。一旦采用,我們會為您增加100枚金幣。